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Abstract—Complementary split-ring resonators are typically 

used as negative-permittivity particles in microstrip left-handed 
structures. In this paper, novel complementary split-ring 
resonators that use square Sierpinski fractal curve are proposed 
and studied in detail. It is shown that the application of fractal 
geometries results in significant miniaturization of the 
metamaterial unit cell, in comparison with conventional and 
equivalent meander structures. Multiple fractal complementary 
split-ring resonators are also analyzed. The influence of different 
geometrical parameters and the order of the fractal curve on the 
performances are investigated, as well as the efficiency of 
excitation of the particles. When used in the design of left-
handed transmission lines, fractal complementary split-rings 
improve frequency selectivity in the upper transition band, when 
compared to other non-fractal topologies.  
 

Index Terms—Metamaterials, split-ring resonators, fractals, 
microwave filters.  

 

I. INTRODUCTION 
Recently, revolutionary results have been obtained in the field 
of metamaterials, artificial structures that exhibit 
electromagnetic properties generally not found in nature. 
Metamaterials are designed using sub-wavelength particles, 
whose size is typically smaller then one tenth of the 
propagating signal wavelength. Due to this fact, quasi-static 
analysis can be performed and the concept of artificial 
effective media can be applied. The structures obtained using 
this approach can be considered as a continuous medium with 
effective parameters, namely effective dielectric permittivity 
and effective magnetic permeability. By a proper choice of 
the type and geometrical arrangement of constituent sub-
wavelength particles, the effective parameters of 
metamaterials can be made arbitrarily small or large, or even 
negative. 

Double-negative or left-handed media, that simultaneously 
exhibit negative values of permittivity and permeability in a 
certain frequency range, were first theoretically studied by 

                                                 
Manuscript received September 21, 2007. This work was supported in part by 
the Ministry for Science and Environmental Protection of Republic of Serbia 
under Contract 401-00-213/2006-01/05, and by EUREKA project number 
E!3853.  
V. Crnojević-Bengin and V. Radonić are with the Faculty of Technical 
Sciences, University of Novi Sad, Serbia (phone:  381-21-485-2553; fax: 
381-21-475-0572; e-mail: bengin@uns.ns.ac.yu, vasaradonic@eunet.yu).  
B. Jokanović is with the IMTEL-Komunikacije, Belgrade, Serbia (e-mail: 
branka@insimtel.com). 

Veselago, [1]. However, the first structure that exhibits 
negative permittivity by decreasing the plasmon frequency 
into microwave range was proposed in mid nineties, [2]. 
Shortly afterwards, a particle called split-ring resonator, that 
provides negative permeability at microwave frequencies, was 
introduced, [3]. By superimposing these two structures, the 
existence of left-handed metamaterial was experimentally 
proved in 2001, [4]. 

An array of split-ring resonators exhibits the extreme values 
of effective magnetic permeability in the vicinity of 
resonance, namely highly positive/negative in a narrow band 
below/above the quasi-static resonant frequency of the rings. 
Although having a narrow frequency range with negative 
permeability, the configurations using split-ring resonators 
have driven a lot of attention, [5], [6]. An array of split-ring 
resonators exhibits filtering properties, and, when properly 
polarized, can inhibit signal propagation, thus offering an 
effective way to reject a frequency band in the vicinity of its 
quasi-static resonance, [7]. 

In the microstrip technology, split-ring resonators can only 
be etched on the upper substrate side, next to the host 
transmission line. In order to enhance the coupling, the 
distance between the line and the rings should be as small as 
possible. Therefore, square or rectangle geometries are 
typically used instead of the originally proposed circular ones. 
The microstrip line loaded with split-ring resonators is a 
single-negative medium, and therefore exhibits a stop-band 
characteristic.  

With the aim of further miniaturization, other sub-
wavelength particles have been recently proposed, such as the 
broadside coupled split-ring resonator, [8], and the spiral 
resonator, [9], [10], as well as multiple geometries, namely 
the multiple split-ring resonator, and the multiple spiral 
resonator, [11], [12]. Although solutions utilizing multiple 
spiral resonators exhibit the highest potential for 
miniaturization, they also suffer from high insertion loss. 

Applying the Babinet principle, a complementary structure 
was proposed in [13], namely the complementary split-ring 
resonator. In the microstrip technology, complementary split-
ring resonators are etched in the ground plane, beneath the 
microstrip, with their axes parallel to the vector of the electric 
field, thus contributing to the negative effective dielectric 
permittivity of the structure. In order to obtain the left-handed 
behaviour, effective negative permeability has to be 
introduced to the structure. This is achieved by periodically 
etching capacitive gaps in the conductor strip. 

In this paper, novel sub-wavelength particles are presented 
based on the application of fractal geometries to 
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complementary split-ring resonators, [14]. The 
electromagnetic behaviour of the proposed particles is 
investigated from the point of view of the size reduction, 
performances and coupling to the host transmission line.  

In Section II, the possibilities of application of two-
dimensional fractal curves in sub-wavelength particle design 
are analyzed. The definition of fractal dimension is given and 
it is described why square Sierpinski fractal curve has been 
chosen to substitute conventional square complementary split-
ring resonator geometry. The configuration of the proposed 
square Sierpinski complementary split-ring resonators is also 
shown.  

In Section III new metamaterial unit cells based on the 
application of square Sierpinski complementary split-ring 
resonators and gaps etched in the microstrip are presented. 
The influence of different geometrical parameters to the 
performances of the proposed unit cells is analyzed in detail, 
and compared with other similar but non-fractal geometries. 
The efficiency of excitation of square Sierpinski 
complementary split-ring resonator by axial electric field is 
analyzed as a function of geometry of the ring. Unit cells that 
use multiple square Sierpinski complementary split-ring 
resonators are investigated for the first time, as well as the 
influence of the fractal curve order on performances of the 
proposed unit cells. The electrical model of the unit cell and 
the procedure for circuit parameter extraction are given, and 
circuit parameters are extracted for all structures. Different 
behaviour of conventional square and fractal rings is 
illustrated by dispersion diagrams. 

In Section IV, the proposed unit cells are applied to the 
design of left-handed transmission lines. The simulation and 
measurement results are given, and the performances of all 
fractal-based structures are compared with those obtained by 
configurations that use conventional square complementary 
split-ring resonators with the same dimensions. The 
conclusion is given in Section V. 

II. FRACTAL CURVES 
The fractal curves have been known since the end of 19th 

century, when Peano constructed a continuous curve that 
passes through every point of a given region, [15]. The fractal 
curves are generated in an iterative manner by successive 
repetition of one geometrical shape with the other (that often 
is a collection of scaled copies of the first shape). After each 
iteration, a fractal curve of the higher order is obtained, longer 
then the previous one, which better fills the area in which it is 
generated. This space-filling property offers high potentials 
for miniaturization of passive microwave circuits, because, 
theoretically, the application of fractal curves allows the 
design of infinite-length lines on a finite substrate area. 

Our recent results have shown that the application of fractal 
curves results in very compact high-Q microstrip resonators 
and filters, [16], [17], which outperform all other non-fractal 
solutions. This is due to the increase of the overall length of 
the microstrip line on a given substrate area as well as to the 
specific line geometry.  

The fractal geometries have also been utilized for the 
design of wire structures used in applications such as 

miniaturized antennas [18]-[21], frequency selective surfaces, 
[22], high-impedance surfaces, [23], [24], left-handed 
metamaterials, [25], and radio-frequency identification, [26]. 
In the metamaterial designs, a bulk effective medium is 
formed by embedding a great number of identical sub-
wavelength fractal-shaped inclusions within a host medium. 
Also, an extended class of space-filling wire structures based 
on grid-graph Hamiltonian paths and cycles has been 
investigated, [27]. Possible practical applications of the 
results mentioned above are envisaged in the design of thin 
absorbing screens, and ground-planes for antennas. However, 
they are not directly applicable to the split-ring design, 
because, in the latter case, some additional characteristics of 
the fractal curves are required. 

The fractal curves are characterized by fractal, i.e. non-
integer, dimension. The dimension of every fractal curve is 
the number between 1 and 2, and can be understood as a 
measure of the space-filling ability of the fractal curve. The 
dimension D can be determined as a logarithmic ratio between 
the number of self-similar segments obtained from one 
segment after each iteration, k, and the number of segments 
obtained from one segment in each iteration, r: 
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A great number of fractal curves are known today. Trying 

to determine which fractal curve would suit best given 
application, some criterion has to be introduced. With the aim 
of further miniaturization, the fractal dimension is chosen as 
the most important characteristic. The higher the fractal 
dimension, the better fractal curve fills the given area, 
therefore achieving higher compactness. Three fractal curves 
are known that have fractal dimension equal to 2 (i.e. the 
maximum value): Peano, Hilbert and square Sierpinski 
fractals, shown in Fig. 1. 
 

 
(a) (b) (c) 

 
Fig. 1.  Fractal curves with the dimension equal to 2: (a) Peano, (b) Hilbert, 
and (c) square Sierpinski. 
 

Since Hilbert and Peano fractals are open curves that have 
ends on the opposite sides, they are convenient for usage in 
structures such as end coupled microstrip resonators, [16], or 
metasurfaces, [23]-[25], [27]. However, in the case of split-
ring resonators, some specific characteristics of the fractal 
curve are required. In order to ensure the best performances of 
a split-ring, a trade-off is needed between increased 
inductance and capacitance of the particle (i.e. maximized line 
length) and its geometry. The geometry of the particle has to 
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allow for efficient excitation, i.e. the particle has to have an 
unoccupied area in its middle section. 

Square Sierpinski fractal consists of squares that fill the 
given area. It resembles Minkowski fractal, but has ratio 
between inner and outer squares equal to 2:3. Furthermore, in 
the case of square Sierpinski fractal, inner and outer squares 
overlap, thus creating a denser structure. Square Sierpinski 
fractal curves of the first three orders are shown in Fig. 2. 
 

 
Fig. 2.  Generation of square Sierpinski fractal curve – first three iterations. 

 
Sierpinski fractal curve of the second order with the 

relevant dimensions is shown in Fig. 3(a), where a, b and g 
denote size of its segments. According to the rule of square 
Sierpinski fractal generation, the following relations are 
obtained: 
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A closed curve can be designed that follows the outer 

perimeter of the square Sierpinski fractal curve that can 
straightforwardly be used as a substitute to the conventional 
square complementary split-ring resonator. 
 

 
(a) (b) 

 
Fig. 3.  (a) Square Sierpinski fractal curve of the second order, (b) Single 
square Sierpinski complementary split-ring resonator.  

 
The square Sierpinski complementary split-ring resonator, 

designed to follow the outer perimeter of the fractal curve, is 
shown in Fig. 3(b), where d denotes length of insets. The 
etched line having minimal width achievable by the 
conventional PCB technology is used, equal to 100 μm. It is 
well known, [3], that by the usage of two concentric rings 
with slits on the opposite sides, resonant frequency of the 
structure can be significantly reduced. In order to investigate 
influence of the number of concentric rings, multiple (N≥2) 
square Sierpinski complementary split-ring resonators will 
also be analyzed. The separation between concentric rings is 

chosen to be the minimal achievable, i.e. equal to 100 μm, to 
enhance the coupling. 

To facilitate insertion of more then one concentric square 
Sierpinski complementary split-ring inside the structure, 
while keeping the overall dimensions of the particle fixed, gap 
g has to be reduced. This also results in a decrease of length 
of insets d. Square Sierpinski complementary split-ring 
resonators obtained in this manner are shown in Fig. 4, for the 
case N=2, 3 and 4, respectively, where N denotes number of 
concentric complementary rings. 

 

 
(a) (b) (c) 

 
Fig. 4.  Multiple square Sierpinski complementary split-ring resonators with 
N concentric rings: (a) N=2, (b) N=3, (b) N=4.  

III. LEFT-HANDED UNIT CELLS THAT USE SQUARE SIERPINSKI 
COMPLEMENTARY SPLIT-RING RESONATORS 

A. Configuration 
In order to obtain left-handed behaviour, two particles need 

to be combined in a unit cell: complementary split-ring 
resonator that will provide negative effective permittivity and 
a gap in the microstrip that will provide negative effective 
permeability. In order to achieve high magnetic coupling 
between the line and the ring at resonance, complementary 
split-ring resonators are etched in the ground layer under the 
gaps. The proposed unit cell is shown in Fig. 5, where both 
top (dark grey) and bottom (light grey) conductive layers are 
shown. The unit cell was simulated on a 1.27 mm thick 
Taconic CER-10 substrate, with εr= 9.8 and dielectric loss 
tangent equal to 0.0025. The outer dimensions of a single 
square Sierpinski complementary split-ring resonator are 
equal to 5.1 x 5.1mm, i.e. λg/15 x λg/15 on a given substrate. 

 

 
 
Fig. 5.  Left-handed unit cell that consists of N=2 square Sierpinski 
complementary split-ring resonator and a gap in the host microstrip line. 

 

B. Influence of Different Geometrical Parameters  
In order to analyze the influence of different geometrical 

parameters on the performances of square Sierpinski 
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complementary split-ring resonator, lengths of insets d are 
varied. Fig. 6 shows two extreme cases: d=1800 μm is the 
original square Sierpinski complementary split-ring resonator, 
i.e. the one whose dimensions correspond to the rule of 
generation of the fractal curve, and d=600 μm corresponds to 
the minimum achievable inset. Furthermore, to highlight the 
specific features of fractal curves, the proposed unit cell is 
compared with a cell that uses conventional square 
complementary split-ring resonator (CSRR) as well as with a 
cell that uses meander shaped complementary split-ring 
resonator (M CSRR), shown in Fig. 6(c). Meander 
complementary split-ring resonator has been designed to 
occupy precisely the same area as the original square 
Sierpinski complementary split-ring resonator, as well as to 
have exactly the same circumference of the rings. The 
performances of the proposed structures are determined using 
EMSight, EM simulator in Microwave Office and the 
comparison of simulation results for the lossy case is given in 
Table I, where fr denotes resonant frequency of the unit cell, 
BW is a 3 dB bandwidth, s21

0 and s11
0 are insertion loss and 

reflection at resonant frequency, QL is loaded and QU is 
unloaded quality factor. 
 

  
(a) (b) (c) 

 
Fig. 6.  Analyzed topologies: (a) square Sierpinski complementary split-ring 
resonator, d=1800 μm, (b) square Sierpinski complementary split-ring 
resonator, d=600 μm, and (c) meander complementary split-ring resonator 
with the same circumference and the same area of the rings as the resonator 
depicted in (a). 

 
TABLE I 

SIMULATION RESULTS FOR UNIT CELLS THAT USE N=2 SQUARE SIERPINSKI 

COMPLEMENTARY SPLIT-RING RESONATORS (SS CSRR) WITH DIFFERENT 

LENGTHS OF INSETS, COMPLEMENTARY SPLIT-RING RESONATOR (CSRR)  
AND MEANDER COMPLEMENTARY SPLIT-RING RESONATOR (M CSRR)  
 SS CSRR CSRR M CSRR 
d [μm] 1800 1200 600 - - 
fc1 [GHz] 1.34 1.51 1.72 2.03 1.57 
BW [MHz] 97.7 126 177.3 256.6 127 
BW [%] 7.29 8.34 10.31 12.64 7.38 
s21

0 [dB] -5.02 -3.86 -2.9 -2.23 -3.83 
s11

0 [dB] -8.95 -11.2 -14.3 -20.2 -12 
QL 13.72 11.98 9.7 7.91 12.36 
QU 20.01 20.35 19.91 19.7 21.1 

 
Since decreasing d results in shorter circumference of the 

square Sierpinski complementary split-ring resonator, its 
resonant frequency increases, due to the reduced inductance 
and capacitance of the particle. However, in all cases a 
significant reduction of the resonant frequency in comparison 

to the conventional complementary split-ring resonator can be 
observed, ranging from 15% to 34%, for different length of 
inset d. Furthermore, all fractal structures exhibit higher 
values of the quality-factor then the conventional ring. 

The comparison of unit cells that use meander 
complementary split-ring resonator and the original (d=1800 
μm) square Sierpinski complementary split-ring resonator, 
gives the evidence to improved performances of the fractal 
geometries in comparison with similar but non-fractal ones. 
Although both structures have exactly the same line length 
and occupy precisely the same area, resonant frequency of the 
unit cell that uses square Sierpinski complementary split-ring 
resonator is approximately 15% lower, due to the specific 
shape of the fractal curve.  

Therefore, it can be concluded that fractal geometries with 
the original dimensions perform better in terms of 
miniaturization than the modified ones, as well as better then 
similar non-fractal structures. Although square Sierpinski 
complementary split-ring resonator with insets equal to 600 
μm shows significantly better insertion loss then its 
counterpart with maximized insets, it is less interesting from 
the point of view of miniaturization. That is why in the 
remaining part of this paper, only fractal structures with the 
original dimensions will be considered, modified only to the 
minimal extent to allow the insertion of inner concentric 
rings. However, it should be kept in mind that fractal rings 
can achieve significantly lower insertion loss if insets smaller 
then the original ones are used, at the price of somewhat 
increased dimensions of the unit cell. 

C. Efficiency of Excitation 
Complementary split-ring resonator is excited by axial 

electric field that penetrates the area in the centre of the ring. 
In the case of square Sierpinski complementary split ring 
resonator, this area is partially occupied by the ring. In this 
section, the influence of fractal geometry on the efficiency of 
excitation is analyzed. 

Two unit cells with similar geometries are simulated: one 
that uses the proposed square Sierpinski complementary split-
ring resonator, and the other that uses quasi square Sierpinski 
complementary split-ring resonator. In the latter case, two 
opposite insets are rotated outwards, Fig. 7(b), so that the size 
of the homogenous metallic segments within the ring is 
increased for approximately 15%. It is commonly believed 
that such structure will allow more efficient excitation and 
result in stronger coupling between the host microstrip line 
and the ring.  

The simulation results shown in Table II reveal that the 
resonant frequency is almost unchanged, which is expected 
due to the fact that both structures have approximately the 
same inductance and capacitance. However, the other 
performances are almost unchanged as well: the unit cell with 
quasi square Sierpinski complementary split-ring resonators 
exhibits very slightly wider 3 dB bandwidth, somewhat 
smaller insertion loss in the pass-band, and lower quality 
factors. All these can be attributed to enhanced excitation, i.e. 
better coupling between the ring and the microstrip, which is 
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the direct result of increased area of the homogenous metallic 
segments within the ring. However, all differences are so 
small that we concluded that the shape of the fractal ring does 
not significantly influence the excitation. The increased 
insertion loss that fractal rings exhibit in comparison to the 
conventional ones (Table I) is not due to deteriorated 
excitation, but is the consequence of the significantly 
increased length of the fractal ring. This conclusion is also 
supported by additional experiments performed with similar 
structures, such as square Sierpinski complementary split-ring 
resonator rotated for 45 degrees in respect to the original one. 
In all cases, almost negligible differences in performances 
were observed although area available for excitation was 
significantly changed. 

 

 
 

(a) 
 

(b) 
 

Fig. 7.  Unit cell that uses: (a) square Sierpinski complementary split-ring 
resonator, (b) quasi square Sierpinski complementary split-ring resonator.  

 
TABLE II 

SIMULATION RESULTS FOR UNIT CELLS THAT USE SQUARE SIERPINSKI 

COMPLEMENTARY SPLIT-RING RESONATORS (SS CSRR) AND QUASY SQUARE 

SIERPINSKI COMPLEMENTARY SPLIT-RING RESONATORS (Quasi SS CSRR) 

 SS CSRR Quasi SS CSRR 
fc [GHz] 1.35 1.32 
BW [MHz] 97.5 97.6 
BW [%] 7.22 7.39 
s21

0 [dB] -5.01 -4.86 
s11

0 [dB] -8.95 -9.72 
QL 13.85 13.52 
QU 20.23 20.08 

 

D. Unit Cells That Use Multiple Square Sierpinski 
Complementary Split-Ring Resonators 

The influence of additional inner concentric rings of square 
Sierpinski complementary split-ring resonator on 
performances of the unit cell is analyzed in Table III for the 
lossy case. 

In the case of the conventional complementary square split-
ring resonators, adding multiple split-rings significantly 
reduces resonant frequency, due to the increased inductance 
of the structure, [11], [12]. In the case of fractal curves, this 
holds only when the structures with N=1 and N=2 rings are 

compared, due to considerably increased capacitance of the 
unit cell. Adding more then two concentric complementary 
split-rings changes the resonant frequency only for a few 
percents, owing to the specific space-filling property of the 
fractal curves. However, when the number of concentric rings 
is increased, the second harmonic is significantly shifted 
towards the higher frequencies, up to more then three times 
the first resonance, thus resulting in a much wider stop band.  

 
TABLE III 

SIMULATION RESULTS FOR UNIT CELLS THAT USE MULTIPLE SQUARE 

SIERPINSKI COMPLEMENTARY SPLIT-RING RESONATORS 
N 1 2 3 4 
fc1 [GHz] 1.94 1.34 1.33 1.36 
BW [MHz] 159.5 97.7 94.4 121.7 
BW [%] 8.2 7.3 7.1 8.9 
s21

0 [dB] -4.27 -5.02 -5.04 -4.43 
s11

0 [dB] -3.24 -8.95 -8.25 -9.21 
fc2 [GHz] 3.08 2.86 3.47 4.25 
fc2/fc1 1.58 2.13 2.61 3.11 
QL 12.19 13.71 14.09 11.22 
QU 19.48 20.02 20.52 17.54 

 

E. Influence of the Fractal Curve Order 
Unit cells with N=1 and N=2 square Sierpinski 

complementary split-rings of the third order have been 
simulated for the lossy case, to analyze the influence of the 
order of the fractal curve. The overall dimensions of square 
Sierpinski complementary split-ring resonators are 
unchanged, i.e. equal to 5.1 x 5.1 mm. Both structures are 
shown in Fig. 8, while their performances are compared in 
Table IV.  
 

 
(a) 

 
(b) 

 
Fig. 8.  Unit cells that use (a) N=1 and (b) N=2 concentric square Sierpinski 
complementary split-rings with the fractal curve of the third order.  
 

By comparing the results for N=1 from Table III and Table 
IV, it can be seen that the application of the fractal curves of 
the higher order results in the reduction of the resonant 
frequency of almost 20%, and therefore allows the design of 
more compact unit cells. When the number of concentric rings 
N is increased, the proposed unit cell scales down to λg/20 x 
λg/20. The increased losses are direct result of the increased 
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line length, but at the same time the second harmonic is 
shifted at more then four times the first resonance. 

 
TABLE IV 

SIMULATION RESULTS FOR UNIT CELLS THAT USE N SQUARE SIERPINSKI 

COMPLEMENTARY SPLIT-RINGS OF THE THIRD ORDER 
N 1 2 
fc1 [GHz] 1.56 1.14 
BW [MHz] 58.2 57.7 
BW [%] 3.7 5.1 
s21

0 [dB] -5.56 -8.85 
s11

0 [dB] -6.38 -3.76 
fc2 [GHz] 3.86 4.8 
fc2/fc1 2.47 4.21 
QL 26.89 19.69 
QU 37.24 22.64 

 

F. Electrical Model and Parameter Extraction 
The proposed unit cell can be modelled by the equivalent 

circuit shown in Fig. 9 regardless of the type of the 
complementary split-ring resonator used (conventional or 
Sierpinski) or of the number of concentric rings. This model 
is valid under the assumption that the size and the distance 
between the adjacent rings are both electrically small, which 
is the case. The complementary split-ring resonator is 
modelled by the parallel resonant circuit (with inductance Lr 
and capacitance Cr), electrically coupled to the host microstrip 
line through the line capacitance Cc. The microstrip line is 
modelled by the inductance L, while the capacitance Cg 
models the series gap in the microstrip.  
 

 
 
Fig. 9.  Equivalent circuit of the proposed unit cell.  

 
Values of the elements of equivalent circuit are obtained 

from the frequency response of the unit cell, for the lossless 
case. Two specific frequencies are used in the process: the 
resonant frequency of the complementary split-ring, f0, and 
the transmission zero frequency fz, at which the impedance of 
the shunt branch is equal to zero. 

At the resonant frequency of the complementary split-ring, 
 

        
rrCL

f
π2

1
0 = ,          (3) 

 
the impedance seen from the input port is given by the 
impedance of the output port, equal to 50Ω, enlarged for the 
reactive impedance of the series branch. This frequency can 
easily be determined from the Smith Chart. The line 

inductance L is estimated using a transmission line calculator, 
and the capacitance Cg is determined based on the value of 
series reactance. 

The transmission zero frequency, 
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is also easily obtained from full-wave simulations. Equations 
(3) and (4) can be rewritten in the following form: 
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thus giving dependence of Lr and Cr from Cc. The response of 
the electrical model is fitted to the one obtained from full-
wave simulations by changing value Cc, using Variable Tuner 
tool available in Microwave Office. To validate the parameter 
extraction method and the obtained values of circuit elements, 
the responses are compared in Fig. 10, for both fractal and 
conventional unit cells with two concentric rings (N=2). It can 
be seen that the electrical model describes electromagnetic 
behaviour of the unit cell very accurately, and in a wide range 
of frequencies, up to the second harmonic. The second 
harmonic exists in electromagnetic responses due to the 
distributed nature of the structures. A more complicated 
electrical model could be developed that would accurately 
predict the second resonance too. However, since the second 
harmonic is not of interest for the current application, the 
simplified model shown in Fig. 9 is used. 

 

0 1 2 3 4 5
f [GHz]

-60

-40

-20

0

s2
1 

[d
B

]

 
Fig. 10.  Comparison of responses obtained from full-wave electromagnetic 
simulations (em) and electrical simulations (el) of model shown in Fig. 9, for 
unit cells that use square Sierpinski complementary split-ring resonator (SS 
CSRR) and complementary split-ring resonator (CSRR) with two concentric 
rings. 

em CSRR

el CSRR

em SS CSRR

el SS CSRR
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Table V contains the extracted values of circuit elements 
for unit cells that use multiple square Sierpinski 
complementary split-ring resonators. To illustrate the 
differences which occur when fractal geometry is used, 
extracted parameters for conventional multiple square 
complementary split-ring resonators that occupy the same 
area as their fractal counterparts are shown in Table VI, 
together with the extracted values for the meander 
complementary split-ring shown in Fig. 6(c). In both tables, N 
denotes the number of concentric rings. 
 

TABLE V 
EXTRACTED PARAMETERS FOR UNIT CELLS THAT USE MULTIPLE SQUARE 

SIERPINSKI COMPLEMENTARY SPLIT-RING RESONATORS DESIGNED WITH 

FRACTAL CURVES OF THE SECOND AND THE THIRD ORDER 
Order II III 

N 2 3 4 1 2 
L [nH] 2.49 2.37 2.3 2.11 2.08 
Cg [pF] 0.329 0.354 0.389 0.296 0.304 
Cc [pF] 2.49 3.13 3.64 2.36 2.63 
Lr [nH] 2.786 2.361 2.132 1.114 2.326 
Cr [pF] 4.095 5.044 5.222 8.542 7.434 

 
TABLE VI 

EXTRACTED PARAMETERS FOR UNIT CELLS THAT USE MULTIPLE SQUARE 

COMPLEMENTARY SPLIT-RING RESONATORS AND N=2 MEANDER 

COMPLEMENTARY SPLIT-RING RESONATOR WITH THE SAME DIMENSIONS AS 

ITS FRACTAL COUNTERPART. 
 SQUARE COMPLEMENTARY SPLIT-RINGS MEANDER 

N 2 3 4 2 
L [nH] 2.22 2.08 1.87 2.48 
Cg [pF] 0.325 0.338 0.341 0.327 
Cc [pF] 2.52 2.81 2.71 2.47 
Lr [nH] 1.774 2.282 2.815 2.2 
Cr [pF] 2.63 2.47 2.23 3.75 

 
By comparing results in Tables V and VI (square 

complementary split-rings) for N=2, it can be seen that the 
application of fractal geometry increases the inductance of the 
split-ring for approximately 57% and it’s capacitance for 
more then 55%, for the fixed overall dimensions of the ring. 
This is due to the significant increase of the ring’s 
circumference. Host microstrip line inductance, gap 
capacitance and coupling capacitance remain almost 
unchanged. A comparison between N=2 fractal and meander 
geometries reveals significant advantage of the former: 
although both complementary split-rings occupy exactly the 
same area and have exactly the same circumference of the 
rings, square Sierpinski exhibits both larger inductance and 
larger capacitance, due to the specific shape of the fractal 
curve. Again, this gives evidence to superior performances of 
the fractal geometries in comparison with non-fractal ones.  

Different behaviour of fractal and non-fractal structures can 
be observed for higher values of N. In the case of 
conventional square complementary split-rings, the 
inductance Lr significantly increases with N, which is 
expected due to the increased total length of the rings. In the 

same time, the capacitance Cr decreases slightly due to 
reduced dimensions of the most inner ring, [7]. On the other 
hand, quite the opposite effect is observed in the case of 
fractal ring geometry: the inductance Lr decreases and the 
capacitance Cr significantly increases with N. This can be 
explained in the following manner. Although the 
circumference of each ring is increased due to its fractal 
shape, the total inductance is reduced because of the existence 
of line segments with opposite currents in each ring (such as 
insets with length d, Fig. 3(b)). However, the existence of 
insets does not influence the resulting capacitance between 
the rings: fractal concentric rings with almost doubled 
circumference result in more then two times bigger 
capacitance, when compared to the conventional square case.  

This conclusion also holds for complementary split-rings 
that use fractal curve of the third order: although the total line 
length is significantly increased in comparison to the rings 
that use fractal curves of the second order, the inductance Lr is 
almost unaffected. Again, this is explained by the existence of 
a great number of parallel line segments with opposite 
currents that reduce the total inductance. The observed 
reduction of the resonant frequency is mainly due to the 
increased capacitance of the structure.  

Different behaviour of conventional square and fractal rings 
is also noticeable from the dispersion diagrams shown in Fig. 
11. The dispersion relation has been calculated from the 
equivalent circuit: 
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Although both structures are unbalanced and operate in 

somewhat different frequency bands, it can be seen that 
increasing the number of concentric rings N has different 
influence on the dispersion: it increases the stop band in the 
conventional case and decreases it in the fractal case. 
Furthermore, the left-handed pass band is almost unaffected 
by changing N in the fractal case. 

IV. LEFT-HANDED MICROSTRIP LINES THAT USE SQUARE 
SIERPINSKI COMPLEMENTARY SPLIT-RING RESONATORS  

A. Left-Handed Microstrip Lines That Use Unit Cells With 
N=2 Square Sierpinski Complementary Split-Ring 
Resonators 

One possible application of the proposed unit cells is in the 
design of left-handed transmission lines. Such transmission 
lines can be characterized as narrow band pass filters with a 
sharp transition in the lower band edge. However, in the case 
of conventional square complementary split-ring resonators, 
they exhibit poor frequency selectivity in the upper transition 
band. 

In Table VII the simulation results for the lossy case are 
compared for left-handed microstrip lines that use unit cells 
with N=2 square Sierpinski complementary split-ring 
resonators with insets equal to d=1800 μm and d=600 μm, 
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and conventional N=2 complementary split-ring resonators. 
The structures are characterized in terms of a band pass filter, 
where fc denotes central frequency, BW is a 3 dB bandwidth, 
s21

0 is insertion loss in the pass band, QL is loaded and QU is 
unloaded quality factor. 
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Fig. 11.  Dispersion diagrams of left-handed unit cells that use: (a) square 
Sierpinski complementary split-ring resonators with fractal curve of the 
second order, and (b) conventional square complementary split-ring 
resonators. 

 
TABLE VII 

COMPARISON OF SIMULATION RESULTS FOR LEFT-HANDED TRASMISSION 

LINES THAT USE SQUARE SIERPINSKI COMPLEMENTARY SPLIT-RING 

RESONATORS (SS CSRR) AND CONVENTIONAL SQUARE COMPLEMENTARY 

SPLIT-RING RESONATORS (CSRR) WITH TWO CONCENTRIC RINGS (N=2) 

 SS CSRR SS CSRR CSRR 
d [μm] 1800 600 - 
fc [GHz] 1.365 1.765 2.123 
BW [MHz] 69.5 164 170.95 
BW [%] 5.1 9.29 8.05 
s21

0 [dB] -12.8 -6.48 -5.62 
s11

0 [dB] -8.95 -14.3 -20.2 
QL 19.6 10.76 12.4 
QU 20.7 13.88 17.1 

By comparing results obtained for the conventional square 
complementary split-ring resonators with those corresponding 
to the original fractal geometries (d=1800 μm), it can be seen 
that the application of square Sierpinski complementary split-
ring resonators reduces central frequency for more than 35%, 
for the same overall dimensions of the unit cell, at the price of 
reduced bandwidth and increased insertion loss. However, if 
the fractal geometry with d=600 μm insets is used instead, 
reduction of resonant frequency of approximately 17% is still 
achieved, while other performances are preserved. This 
demonstrates the potential that fractal geometries have for 
miniaturization. 

In order to validate simulation results, left-handed 
microstrip lines that use square Sierpinski complementary 
split-ring resonators with the original dimensions and the 
conventional square complementary split-ring resonators were 
fabricated in standard PCB technology on a 1.27 mm thick 
Taconic CER-10 substrate. Photographs of top and bottom 
layers of both fabricated structures are shown in Fig. 12.  

 

 
  

 
 

(a) 
 

(b) 
 
Fig. 12.  Top (upper) and bottom (lower) sides of fabricated structures using: 
(a) conventional square complementary split-ring resonators, (b) square 
Sierpinski complementary split-ring resonators.  

 
The simulation and measurement results for both structures 

are shown in Fig. 13. A good agreement with simulations can 
be observed, except for a shift in frequency approximately 
equal to 10% that have occurred in both cases. Since 
manufacturer specifications for substrate material allow εr 
variations in the range +/- 0.5 as well as variations of 
substrate thickness, this can be explained by the discrepancy 
between the actual and the simulated values of the dielectric 
constant and substrate thickness. The measured insertion 
losses correspond well to the simulated ones. 

Fig. 14 shows the results of measurements performed up to 
6GHz, for both structures. It can be seen that, unlike the 
conventional one, the configuration that uses square 
Sierpinski complementary split-ring resonators shows sharp 
transition on both sides of the pass band. Furthermore, it 
suppresses the second harmonic below 22dB, thus creating a 
wide and deep stop band. 
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Fig. 13.  Simulation (dotted line) and measurement (full line) results for lines 
that use square Sierpinski complementary split-ring resonators and 
complementary split-ring resonators.  
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Fig. 14.  Measurement results for the lines that use square Sierpinski 
complementary split-ring resonators (full line) and complementary split-ring 
resonators (dotted line) in wider frequency range.  
 

B. Left-Handed Microstrip Lines That Use Unit Cells With 
Multiple Square Sierpinski Complementary Split-Ring 
Resonators 

In order to validate simulation results, left-handed 
microstrip lines that use multiple square Sierpinski 
complementary split-ring resonators were fabricated. 
Photographs of top and bottom layers of the fabricated 
structures with N=3 and N=4 concentric square Sierpinski 
complementary split-ring resonators are shown in Fig. 15.  

The measurement and simulation results of the proposed 
left-handed microstrip lines are compared in Fig. 16. A good 
agreement can be observed, except for a shift in frequency 
approximately equal to 10% that occurs in all cases. As in the 
previous case, this can be explained by the discrepancy 
between actual and simulated values of the dielectric constant 
and substrate thickness.  

 
 

 
 
 

 
 
 

 
 

(a) 
 

(b) 
Fig. 15.  Top (upper) and bottom (lower) sides of the fabricated left-handed 
transmission lines that use unit cells with square Sierpinski complementary 
split-ring resonators: (a) N=3, (b) N=4. 
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Fig. 16.  Simulation (dotted lines) and measurement (full lines) results for 
left-handed microstrip lines that use N=2,3,4 square Sierpinski 
complementary split-ring resonators: (a) insertion loss, (b) return loss. 
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Fig. 17 shows the measurement results up to 6 GHz, for all 
proposed left-handed lines. It can be seen that all 
configurations show sharp transition on both sides of the first 
pass-band. As N increases, second harmonics are shifted 
towards higher frequencies. Furthermore, all structures 
successfully suppress a frequency band in the vicinity of the 
second harmonic of the quasi-static resonance of the rings, 
positioned at approximately 2fc1. In that way, wide and deep 
stop bands in the transmission characteristics are created. 
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Fig. 17.  Measurement results for the proposed left-handed microstrip lines 
that use N=2,3,4  square Sierpinski complementary split-ring resonators in 
wider frequency range.  

V. CONCLUSION 
In this paper, novel complementary split-ring resonator 

geometries are presented, that use square Sierpinski fractal 
curves of the second and the third order. The topologies with 
different number of concentric rings are also analyzed, as well 
as the influence that several geometrical parameters have on 
the performances. It is shown that fractal geometries with the 
original dimensions perform better in terms of miniaturization 
then the modified ones, and better then similar but non-fractal 
structures. 

Simulations and measurements show that the application of 
fractal geometries significantly lowers resonant frequency of 
the structure, therefore revealing high potential that fractal 
topologies have for the unit cell miniaturization. Due to the 
unique shape of the fractal curve, inductance of the double 
split-ring is increased for approximately 57% and its 
capacitance for more than 55%, for the same overall 
dimensions of the ring, in comparison to the conventional 
case. Furthermore, the improved frequency selectivity in the 
upper transition band is achieved.  

Since fractal curves fill the space in an optimal manner, 
adding concentric split-rings changes the resonant frequency 
only for a few percents. However, the second harmonic is 
significantly shifted towards the higher frequencies when the 
number of concentric rings is increased, thus resulting in 
much wider stop bands. The proposed structures with multiple 
rings successfully suppress frequency bands positioned at 
approximately 2fc1. In this case, behaviour specific to fractal 

geometries is observed and explained: by adding concentric 
rings, the capacitance of the structure becomes dominant, 
instead of the inductance. Dispersion diagrams further 
illustrate different behaviour of the lines that use multiple 
conventional and fractal complementary split-rings.  

The efficiency of excitation of square Sierpinski 
complementary split-ring resonator by axial electric field is 
also analysed. Although the centre of the proposed unit cell is 
partially occupied by the ring, this does not significantly 
influence the excitation. The increased insertion loss that 
fractal rings exhibit in comparison to the conventional ones is 
not due to deteriorated excitation, but is the consequence of 
the significantly increased length of the fractal ring. 

When the order of the fractal curve used for complementary 
split-ring resonator design is increased, while the overall 
dimensions are fixed, the resonant frequency can be lowered 
for 44% in respect to the conventional case. In this way, even 
more compact unit cells with the dimensions λg/20 x λg/20 
can be designed.  
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